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ABSTRACT

In this study the authors diagnose the sources for the contiguous U.S. seasonal forecast skill that are
related to sea surface temperature (SST) variations using a combination of dynamical and empirical meth-
ods. The dynamical methods include ensemble simulations with four atmospheric general circulation models
(AGCMs) forced by observed monthly global SSTs from 1950 to 1999, and ensemble AGCM experiments
forced by idealized SST anomalies. The empirical methods involve a suite of reductions of the AGCM
simulations. These include uni- and multivariate regression models that encapsulate the simultaneous and
one-season lag linear connections between seasonal mean tropical SST anomalies and U.S. precipitation
and surface air temperature. Nearly all of the AGCM skill in U.S. precipitation and surface air temperature,
arising from global SST influences, can be explained by a single degree of freedom in the tropical SST
field—that associated with the linear atmospheric signal of El Niño–Southern Oscillation (ENSO). The
results support previous findings regarding the preeminence of ENSO as a U.S. skill source. The diagnostic
methods used here exposed another skill source that appeared to be of non-ENSO origins. In late autumn,
when the AGCM simulation skill of U.S. temperatures peaked in absolute value and in spatial coverage, the
majority of that originated from SST variability in the subtropical west Pacific Ocean and the South China
Sea. Hindcast experiments were performed for 1950–99 that revealed most of the simulation skill of the U.S.
seasonal climate to be recoverable at one-season lag. The skill attributable to the AGCMs was shown to
achieve parity with that attributable to empirical models derived purely from observational data. The
diagnostics promote the interpretation that only limited advances in U.S. seasonal prediction skill should be
expected from methods seeking to capitalize on sea surface predictors alone, and that advances that may
occur in future decades could be readily masked by inherent multidecadal fluctuations in skill of coupled
ocean–atmosphere systems.

1. Introduction

Foremost among U.S. seasonal forecast skill sources
is the state of tropical sea surface temperatures (SSTs),
a relation stemming from the sensitivity of atmospheric
stationary waves and storm tracks to tropical forcing
(e.g., Hoskins and Karoly 1981; Held et al. 1989). To
date, El Niño–Southern Oscillation (ENSO), which is
typified by east tropical Pacific SST variations, is the
single phenomena of the ocean–atmosphere system
demonstrated to render U.S. seasonal forecasts skillful
(e.g., Barnett and Priesendorfer 1987; Barnston 1994;
Higgins et al. 2004). That skill is elevated in the winter
and spring seasons, at which time it also exhibits a large
spatial footprint over the United States because of the
planetary scale of ENSO-forced circulation variations.

The question we pose is whether ENSO constitutes
the sole tropical SST source of U.S. seasonal forecast
skill. To be sure, empirical and simulation studies have
identified sensitivities to SST forcings outside the east
tropical Pacific. For example, the influence of SST
anomalies over a region north of the equator in the
tropical west Pacific was highlighted by Palmer and
Owen (1986) as contributing to the severe U.S. winter
of 1976/77. Empirical support for such a connection was
provided by studies of the relation between atmo-
spheric circulation patterns and proxies for tropical
convection (Livezey and Mo 1987). The influence of
SST anomalies over the warm pool regions of the In-
dian and western Pacific Oceans have also been shown
to play roles in the U.S. climate, such as during 1997
and 1998 (Pegion et al. 2000), and during 1998–2002
when the United States experienced protracted warm
and dry conditions (Kumar et al. 2001; Hoerling and
Kumar 2003). Idealized modeling experiments, both
linear dynamical models forced by tropical heating
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(e.g., Ting and Yu 1998; Chen and Newman 1998) and
perpetual-mode general circulation models forced with
idealized SSTs (Geisler et al. 1985; Barsugli and
Sardeshmukh 2002), have confirmed robust Pacific–
North American responses to forcings located outside
the classic ENSO region of the east tropical Pacific.

Historical simulations of twentieth-century climate
using atmospheric general circulation models (AGCMs)
subjected to observed monthly evolving global SSTs are
now permitting diagnosis of sensitivity patterns under
realistic conditions. The availability of multi-AGCMs,
each run numerous times over an historical period, per-
mits a more robust and reliable identification of atmo-
spheric response patterns associated with tropical forc-
ing than hitherto possible. Using a 46-member en-
semble of 50-yr experiments spanning 1950–99 from
four different AGCMs, Hoerling and Kumar (2002)
subjected the monthly 500-hPa height fields of the mul-
timodel ensemble to an empirical orthogonal function
(EOF) analysis. These yielded evidence for at least four
different characteristic atmospheric patterns associated
with tropical SST variability. The leading one was the
well-known ENSO teleconnection. However, the addi-
tional patterns accounted for up to 50% of the local
boundary-forced variance over parts of North America,
and appeared to be of non-ENSO tropical origin. It is
unknown whether these additional sensitivities contrib-
ute to skill of U.S. surface temperature and precipita-
tion predictions.

An ensemble of AGCM runs yields a wealth of in-
formation about the sensitivity of the atmosphere to
observed SST anomalies. However, it is often not clear
what the relationship between the prescribed SST and
the GCM ensemble mean atmospheric response is. For
example, further diagnosis is necessary to determine
how many degrees of freedom in the SST field are ac-
tually involved in producing the simulated atmospheric
signals. This is useful information, since it defines the
relevant phase space of SST patterns that need to be
predicted accurately for a seasonal forecast. Even if
information can be obtained about the SST patterns
from the Atmospheric Model Intercomparison Project
(AMIP) runs (see, e.g., Hoerling and Kumar 2002), one
is still left wondering how predictable those patterns
are. Goddard and Mason (2002) examined the predict-
ability issue by running a complementary ensemble of
GCM runs, but instead of the traditional AMIP ap-
proach, they use SSTs that persisted (as a simple pre-
diction) for one season. In this way they were able to
investigate the predictability of the seasonal mean at-
mospheric state based on forecast SSTs rather than si-
multaneous SSTs. Here we attempt to address both the
question of how many degrees of freedom are needed

to reproduce the ensemble mean GCM response over
the United States, and the question of how predict-
able that response is, using an empirical statistical
model trained on the 46-member multimodel GCM en-
semble.

Our study combines AGCM and empirical methods
to diagnose the simulation and hindcast skill of seasonal
surface climate over the United States during 1950–99.
The datasets and methods are presented in section 2.
Section 3 presents results in which the seasonally vary-
ing skill of surface temperature and precipitation are
described and diagnosed. In addition to the expected
ENSO contribution, a non-ENSO source of skill is dis-
covered. Section 4 focuses on a diagnosis of this addi-
tional source of U.S. skill. A summary and concluding
comments are given in section 5.

2. Data and method

a. Observations

Monthly observed U.S. surface temperature and
rainfall data for 1950–99 are available on a 2.5° grid
based on the Global Historical Climate Network.
Monthly SST analyses for 1950–99 come from the Met
Office Hadley Center’s Global Sea Ice and SST dataset
(Rayner et al. 2003). The global SSTs are created using
various techniques including reduced space optimal in-
terpolation, and are available on a 1° grid.

b. Atmospheric climate simulations forced by
global SSTs

The SST role in climate variability is assessed using
AGCMs forced with the specified, observed monthly
variations in SSTs for 1950–99. Multiple integrations
are begun from different atmospheric initial conditions,
but in which each ensemble member is subjected to
identically specified sea surface conditions.

Four different AGCMs are used, consisting of a total
of 46 simulations spanning the last half of the twentieth
century. The models used are identical to those in
Hoerling and Kumar (2002). Table 1 summarizes their
spatial resolutions, and the reader is referred to the
indicated references for details on different dynamical
cores and physical parameterizations used in each
model. The AGCMs include 12 simulations using the
National Center for Atmospheric Research (NCAR)
Community Climate Model (CCM3; Kiehl et al. 1998),
12 simulations using the National Centers for Environ-
mental Prediction Medium-Range Forecast model
(MRF9; Kumar et al. 1996), 10 simulations using
the European Center–Hamburg Model (ECHAM3;
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Roeckner et al. 1992), and 12 simulations using the cli-
mate model of the Geophysical Fluids Dynamics Labo-
ratory (GFDL; Broccoli and Manabe 1992).

Our analysis of the AGCMs is based on the com-
bined 46-member ensemble. The ensemble mean sea-
sonal anomaly for each of the four models is calculated
relative to the respective models’ climatology for each
of the 600 overlapping seasons during 1970–99. The
ensemble mean anomaly of each model is standardized
by its SST boundary-forced (external) variance, as de-
scribed in more detail in Hoerling and Kumar (2002).
These standardized anomalies are then averaged across
the four models in order to produce the multimodel,
standardized anomaly. Actual anomalies are recovered
by multiplying the standardized anomaly of each season
by the four-model-averaged external variance. Hori-
zontal and vertical resolutions of these models are
listed in Table 1. In an analysis examining the impact of
different ensemble mean methods Y.-H. Byun (2002,
personal communication) compared the skill of this 46-
member ensemble mean and the skill of another en-
semble mean of the same 46-member but used a
weighted average in which the weights were different
for each member and determined by minimizing the
difference between the model ensemble mean and the
verification field. Byun’s results indicated that for the
1950–99 50-yr period, the simulation skill of the
weighted ensemble mean is virtually the same as the
skill of the ensemble mean used in this study.

c. Atmospheric climate simulations forced by
idealized SSTs

Simulations using a fixed idealized SST anomaly over
the subtropical western Pacific are conducted, the pat-
tern of which is discussed in section 4. This anomaly is
specified and fixed throughout the seasonal cycle, and
is added to the seasonally varying climatological SSTs.
A total of 20 14-month simulations, beginning from
randomly selected 1 November atmospheric initial con-
ditions, were performed with NCAR’s CCM3, one of
the models included in our multimodel suite forced by
realistic SSTs.

d. Empirical climate prediction model

The empirical model is based on uni- and multivari-
ate linear regression that relates a set of seasonally av-
eraged fields of tropical (20°S–20°N) SST (the predic-
tors) to a set of seasonally averaged model-simulated
fields of U.S. surface temperature and precipitation
(the predictands) (see Fig. 1). Regression models are
developed both for the simultaneous and one-season
lag relationships between predictor–predictand pairs.
This allows us to estimate the relevant SST subspace
both for the zero-lag (contemporaneous) GCM simula-
tion, and the one-season-lag GCM prediction. Unlike
the Goddard and Mason (2002) study, we do not rerun
the GCM with predicted SSTs, but instead use the lag-
covariance relationships between the SST and the simu-
lated atmospheric response from the AMIP integra-
tions to estimate what the GCM prediction would be,
given actual predicted SSTs. This approach assumes
that the relationship between SSTs and the atmospheric
response over the United States is linear. This hypoth-
esis is tested in the next section by verifying that the
empirical model can reproduce the GCM simulation
skill over the United States. The empirical statistical
model we use is very similar to others used for seasonal
prediction (e.g., Barnston 1994), except that in our case
the model is trained on the 46-member ensemble
average of multimodel simulations described in sec-
tion 2b, instead of observed atmospheric states. By
training on the model ensemble mean, our tool de-
scribes the relation between atmospheric signal and
tropical SST forcing, whereas similar tools trained on
the brief, single realization of observed states predict a
blend of signal and noise given a tropical SST state.

In the construction of the statistical model, the raw,
seasonal predictor and predictand data are first prefil-
tered using EOFs in a manner outlined by Barnett and
Preisendorfer (1987) and as implemented by Barnston
(1994). We retain N-EOFs in predictor and M-EOFs in
predictand fields, where the truncation is determined
by applying the formalism of North et al. (1982). For
the tropical SSTs, N is chosen to be five for all 12 over-
lapping seasons. For U.S. precipitation, M is chosen to
be six for all seasons, while M is chosen to be nine for
U.S. surface temperature. The North et al. (1982)
analysis suggested that the EOF modes higher than a
critical order are statistically indistinguishable. There-
fore, we do not include higher-order SST modes in our
analysis and treat the higher-order SST modes as noise.
The EOF expansion coefficients (principal compo-
nents) are then normalized by the square root of their
eigenvalues, and the EOF basis is calculated indepen-
dently for each of the 12 overlapping three-month sea-

TABLE 1. Characteristics of the AGCMs used in the study.

Model
Spectral

resolution
Sigma
layers

Ensemble
size Reference

CCM3 T42 18 12 Kiehl et al. (1998)
ECHAM3 T42 18 10 Roeckner et al.

(1992)
GFDL R30 18 12 Broccoli and

Manabe (1992)
MRF9 T40 18 12 Kumar et al.

(1996)
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sons. The cross-covariance matrix is calculated in EOF
space, and the predicted EOF expansion coefficients
are transformed back to a 2.5° latitude–longitude grid.
A parallel set of univariate regression models is con-
structed to isolate the contribution of ENSO to the
predictands of interest. The univariate regression uses
only the first EOF (i.e., ENSO) mode of the tropical
SST as a predictor, and six (nine) EOF modes of the
U.S. precipitation (surface temperature) as pre-
dictands. The univariate regression is also trained on
the multimodel ensemble mean.

e. Verification methodology

We employ a deterministic measure of skill based
upon the temporal correlation. Monthly mean surface
air temperature and precipitation anomalies are ob-
tained by subtracting the 30-yr climatology of 1970–99
for each calendar month from the monthly mean values
at each grid point over our domain (see Fig. 2). Three-
month mean anomalies are then calculated from the
monthly mean anomalies. The same method is applied
to the output from the 46-member AGCM simulations.
Verification is performed using the three-month mean
anomalies.

All the uni- and multivariate empirical model simu-

lations and hindcasts for each three-month season em-
ploy a cross-validation procedure in which the model is
constructed from the covariance matrix of 49 yr of
seasonal data, excluding the target season for the simu-
lation or hindcast. In this manner, a “new” empirical
model is constructed for each year, and also for each
season. The 1951–99 skill of the empirical model
simulations and hindcasts was then calculated in the
way identical to that applied to the AGCM simula-
tions. When calculating spatial averages of correlation
skill for U.S. surface temperature, coastal grid points
(indicated by circles in Fig. 2) are excluded because

FIG. 1. Schematic of the empirical model used to simulate and forecast U.S. seasonal
precipitation P and surface air temperature Ts. The indices i and j denote the seasons used in
each simulation and hindcast experiment. In the simulations, j is equal to i for each experi-
ment. In the one-season-lead hindcasts, j is one-season lag to i (e.g., when i points to OND of
1998, j is JFM of 1999). See text for further details.

FIG. 2. Grids included in the verification for precipitation (all
circle and plus sign grid points), surface temperature (only the
plus sign grid points).
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local temperature skill at those areas can be largely
determined by the prescribed SST in AGCM simula-
tions.

The field significance of the correlation skill maps for
each variable and for each of the 12 three-month sea-
sons is tested in a manner similar to Livezey and Chen
(1983). For a given variable and season, Monte Carlo
experiments of 3000 samples are first performed by ran-
domly ordering the 50-yr time sequence of observed
fields and then calculating temporal correlations with
the true 1950–99 observed time sequence. From these,
we compute the probability distribution of the number
of U.S. points in Fig. 2 having temporal correlations
exceeding 90% local significance (r � 0.25). Then, the
number of U.S. grid points N0 at 95% of the accumu-
lated obtained distribution constitutes the minimum
number necessary for passing field significance. In or-
der that a correlation skill pattern be field significant,
the actual number of locally significant grid points N
must exceed N0; that is, the ratio N/N0 must exceed 1.

3. Diagnosing SST skill sources

a. U.S. precipitation

The annual cycle of simulation skill, and its sources,
averaged over the United States is summarized in Fig.
3. Correlation skill of the AGCM simulations is low in
all seasons (top), having a minor maximum during win-
ter (thick solid line). Its primary source is tropical SSTs,
as demonstrated by the ability of the multivariate re-
gression model simulation skill (thin solid line) to fully
recover that of the global SST-forced AGCMs. Further,
a single pattern of the tropical SST variations is able to
explain this skill (dotted curve), namely the ENSO sig-
nature of the tropical east Pacific (not shown). The
simulation skills are field significant in winter and
spring, but not so in summer and early autumn (bot-
tom).

Inspection of the spatial patterns of skill reveals the
univariate regression model to be superior to the
AGCM simulation in select regions. Figure 4 shows the
temporal anomaly correlation for the U.S. domain, and
the plotted values are the truncated correlation skill
scores (�10) at all points exceeding 90% significance.
The lower right corner of each panel plots the ratio
N/N0, which denotes field significance for values �1.
The six columns correspond to partially overlapping
three-month seasons, and the top three panels of each
column display the AGCM simulation skill, the multi-
variate regression model skill, and the univariate re-
gression model skill, respectively.

During January–March (JFM), significant skill cov-

ers nearly half the domain in the univariate model, and
mimics the spatial footprint of ENSO’s influence on
U.S. precipitation (e.g., Ropelewski and Halpert 1989;
Kiladis and Diaz 1989). This pattern is only weakly
discernable in the AGCM simulation skill. Throughout
all remaining seasons, it is found that the AGCM simu-
lation skill is generally surpassed by a reduced-space
representation of the relation between SST and model
U.S. precipitation.

The lower panels of each column display the zero-
lead hindcast skill using the multivariate model. These
recover virtually all of the 50-yr-averaged AGCM simu-
lation skill. The univariate model often performs better
than the multivariate model. This is so because ENSO
SSTs are the primary skill source, and the fact that such
an ENSO pattern can, itself, be skillfully predicted at
short lead times.

b. U.S. surface temperature

The SST source for U.S. surface temperature skill is
found to be determined not by ENSO alone, in contrast

FIG. 3. Spatial average of the 1951–99 temporal correlation for
the (top) U.S. precipitation and (bottom) field significance values.
Points above the gray shading are statistically significant at 95%
confidence level.
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to the pure ENSO source that was diagnosed for U.S.
precipitation skill. Figure 5 summarizes the area-
averaged skill of the three simulation datasets, from
which it is evident that the three simulation skills are
comparable during winter and spring, but that the
AGCM skill is greater than either multi or univariate
regressions in summer and autumn. Note that the
AGCM skill is field significant in all seasons (bottom),
contrary to the empirical model skill, which are not
field significant from September–November (SON)
through November–January (NDJ).

There is a distinct NDJ seasonal peak in simulation
skill, at which time the U.S.-averaged 50-yr mean skill
exceeds 0.36. The field significance exceeding 99.9% is
more remarkable when compared with the lack of field
significance by either empirical model simulation. By
contrast, the coincidence in skill of the three simula-
tions during winter and spring indicates that ENSO’s
linear signal is the primary source. An ENSO SST

source appears to impart little skill during other seasons
as indicated by the large divergence between the
AGCM and regression model skills at those times.
These other SST sources could be of tropical origin, but
are unaccounted for by our truncated multivariate
model, or they could be of extratropical sea surface
origin. It is also possible that nonlinear processes asso-
ciated with the atmospheric response to SST forcing are
important contributors to the AGCM skill, relations
also not represented in the regression models.

The spatial distribution of surface temperature skill,
shown in Fig. 6, offers further insights on SST sources.
There is little appreciable difference in skill patterns
occurring among the three simulations during winter
and spring—the similarity with the univariate model
skill confirms once again that the linear component of
the ENSO-forced atmospheric signal is of primary con-
sequence. On the other hand, the AGCM simulation
skill is greater in both its coverage and its absolute

FIG. 4. Temporal correlation between observed and simulated/hindcast three-month mean anomalies of precipitation. Small-font
numbers are the first digit of the correlation coefficient value at each grid point having higher than 90% local significance. Large-font
numbers shown at bottom right corner in each panel indicate field significance level (N/N0) of the corresponding correlation patterns.
Ratios exceeding 1 indicate field significance at 95% confidence level. Note: the lag-0 in figure represents simulation, and lag-1 is used
for zero-lead hindcast in text.
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value than either regression model during summer and
autumn. The footprint differs from the linear ENSO
contribution which, as illustrated by the univariate skill
map, is confined to the southern United States.

Shown in the lower panels of Fig. 6 are the hindcast
skills for the multivariate model. These recover much
of the simulation skill of U.S. surface temperature dur-
ing winter/spring, consistent with the fact that the linear
ENSO influence is of greatest relevance and that such
SSTs are themselves skillfully predicted at zero lead. In
contrast, they fail to reproduce the extensive spatial
coverage of the AGCM’s simulation skill during the
NDJ season.

4. A subtropical west Pacific skill source

We first explore the SST structure associated with
the AGCM’s high skill over the northern United States
during NDJ. The black-shaded box in Fig. 7 keys on the
region of high AGCM skill, and is the domain over
which surface air temperatures are averaged in order to

generate a 1950–99 time series. The correlation of that
time series with SSTs across the global oceans is shown
by the shaded contours, and the analysis is performed
using both the AGCM (top) and observed (bottom)
surface air temperatures. Maximum correlations ex-
ceeding �0.5 occur with SSTs over the northwest Pa-
cific Ocean and the South China Sea, and there is also
some suggestion of an ENSO relation in so far as �0.3
correlations occur with SSTs over the tropical east Pa-
cific. However, the fact that an ENSO region correla-
tion is very weak in the observations suggests it is un-
likely an appreciable skill source. By contrast, the con-
sistency between the simulated and observed high
correlations over the western Pacific suggests that SST
variations there could be an important skill source for
northern U.S. surface air temperature.

The coherency of their interannual fluctuations lends
some support for a causal relation between subtropical
west Pacific SSTs and the northern U.S. index region’s
temperatures. Figure 8 overlays the times series of the
northern U.S. region’s temperature index and an index

FIG. 4. (Continued)
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of SST averaged over the west Pacific box of Fig. 7. The
former is calculated from both AGCM (Fig. 8, top) and
observed (Fig. 8, bottom) surface air temperatures. For
both, the correlation with the west Pacific SST index
exceeds �0.5, with warm sea surface conditions accom-
panying warm northern U.S. surface temperatures. In
addition to the tendency for interannual swings of each
index to be aligned, a post-1970 warming trend in both
ocean and land time series also contributes to the posi-
tive temporal correlations.

Figure 9 shows the temporal variation of our west
Pacific SST index with SST elsewhere. The coherency
of an SST signature that encompasses the South China
Sea, Philippine Sea, and the subtropical west Pacific is
evident. There is only a weak simultaneous relation
with SSTs over the ENSO region, again suggesting that
this west Pacific source of U.S. simulation skill in the
AGCM is not an obvious proxy for ENSO’s effect.

Independent evidence for a causal link between
variations in west Pacific SSTs and U.S. surface tem-
peratures is provided by the additional AGCM experi-

FIG. 5. Same as Fig. 3, but for the U.S. surface temperature.

FIG. 6. Same as Fig. 4, but for the U.S. surface temperature.
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ments forced exclusively with SSTs over that region.
The idealized anomalous SST forcing is obtained from
a composite of the SST pattern contrasting warm and
cold events (when anomalous values exceeded one
standard deviation) in the northern U.S. temperature
(Fig. 8, top), and has similar structure as outlined by the
irregular contour in Fig. 9, and encompasses the spatial
domain of temporally coherent west Pacific SST varia-
tions. A 20-member ensemble of CCM3 simulations
was conducted using both positive and negative polari-
ties of the SST anomalies, with maximum amplitudes of
1°C. The NDJ surface temperature anomalies of the
(warm–cold) experiments are shown in the lower panel
of Fig. 10. Widespread warming covers North America,
with a maximum signal over the northern United States
and southern Canada. This response pattern is remark-
ably similar with the 1950–1999 correlation between an
index of the west Pacific SSTs and both multimodel
AGCM (Fig. 10, top) and observed (Fig. 10, middle)
surface temperatures. Indicated hereby is that the sta-
tistical correlation does indeed describe a cause–effect
relationship.

The implications of the above analyses is that a bi-
variate regression model, having west Pacific and tropi-
cal east Pacific SST predictors, should be able to re-
cover the AGCM simulation skill during the NDJ sea-
son. The simulation skill of such a bivariate model is
shown in Fig. 11 (middle panel). For comparison, the
simulation skill of only a univariate model using the
west Pacific SST as predictor is shown in the top panel
of Fig. 11. Nearly all of the AGCM’s simulation skill
over the northern United States during NDJ (see Fig. 6)
is accounted for by a west Pacific influence. The results
of the bivariate model, which also include the ENSO
influence, almost completely recover the AGCM simu-
lation skill. These calculations support the argument
that the high AGCM simulation skill for NDJ surface
temperature over the northern United States is attrib-
uted to the ocean–atmosphere interactions in the west-
ern Pacific Ocean.

As a final analysis, we reexamine the hindcast skill of
NDJ surface temperatures, but now use a one-season-
lag bivariate regression model. The results are shown in
the lower panel of Fig. 11, and it is apparent that the

FIG. 6. (Continued)
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vast majority of simulation skill is retained in the pre-
diction mode. This suggests that the west Pacific SST
predictor is itself predictable and slowly evolving on the
seasonal time scale. The new subtropical SST source
bears some resemblance to the third canonical correla-
tion analysis SST mode in Barnston and Smith (1996).
However, our analysis revealed that the SST variation
in the subtropical northwest Pacific Ocean is not a di-
rect response to ENSO. In fact, the SST variation in the
subtropical NW Pacific Ocean leads an out-of-phase
ENSO episode by about one year (not shown).

5. Summary and discussion

a. Summary

The SST origins for seasonal forecast skill of U.S.
precipitation and surface air temperature have been di-
agnosed. The principal tool consisted of ensemble
AGCM simulations that were subjected to the known
monthly varying global SSTs from 1950–99. The simu-
lation skill of the resulting multimodel 46-member en-

FIG. 7. Spatial distribution of the correlation coefficient between SST and an index of regional mean
surface temperature over the northern United States (42°–52°N, 120°–70°W) based on (top) AGCM
simulated and (bottom) observed NDJ surface temperatures. The contour interval is 0.1. The black-
shaded box denotes the index region for constructing land temperature time series, and the white box
in the northwest Pacific denotes the index region for constructing SST time series.

FIG. 8. Time series of NDJ anomalies of northern U.S. surface
temperature (solid line) based on (top) AGCM simulations and
(bottom) observations. The dotted line denotes the time series of
NDJ SSTs averaged over the western Pacific region. Inserted
boxes of Fig. 7 show the averaging domains for constructing each
time series.
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semble was evaluated, and then diagnosed using two
empirical reductions of the full AGCM data. The first
consisted of a multivariate linear regression model re-
lating the simultaneous states of five leading tropical
SST patterns to the AGCM’s U.S. seasonal climate.
The second was a univariate linear regression model
whose predictor consisted of the single leading tropical
SST pattern only—ENSO.

Our diagnosis revealed that the AGCM simulation
skill could be explained largely from the linear influ-
ence of tropical SST variations. Furthermore, one de-
gree of freedom in those tropical SSTs, namely ENSO,
was the virtually exclusive interannual skill source
originating from tropical oceans. In the case of U.S.
seasonal precipitation, the univariate regression model
that encapsulated the linear ENSO signal produced
simulation skill that exceeded the AGCM simulation
skill, though field significance was confined to the pe-
riod of late autumn–late spring. One interpretation for
the superior precipitation skill of the univariate model
is that although sensitivity patterns to non-ENSO SSTs
existed in the AGCMs, they were seemingly erroneous
and served to obscure the true skill source related to
ENSO.

A new SST skill source, of apparent non-ENSO ori-
gins, was discovered for U.S. surface air temperature.
Although the AGCM’s winter–spring skill source was
again accounted for by a univariate linear influence of
ENSO, the AGCM skill significantly exceeded that of
either the linear models during the period from late
summer through autumn. During these latter seasons,
both the AGCMs’ U.S.-averaged correlation skill and
the spatial extent of its significant local correlations
greatly exceeded those occurring in the reduced phase
space linear model simulations based on tropical SSTs

alone. Our investigation focused on the NDJ season of
maximum difference in skills, and a coherent source
related to SST variability over the subtropical west Pa-
cific Ocean and the South China Sea was found.

That this empirical relation constituted a cause–
effect link was confirmed through analysis of an addi-
tional suite of AGCM experiments that used an ideal-
ization of SST forcing confined to the far west Pacific/
South China Sea region. Those runs yielded a pattern
of U.S. surface warming in response to warm SST forc-
ing that reproduced the characteristic correlation pat-
terns derived from both the globally forced multimodel
ensemble and the observational datasets. A linear bi-
variate regression model using only indices of Niño-3.4
and west Pacific/South China Sea SSTs explained vir-
tually all of the AGCM simulation skill during the NDJ
season.

Hindcast experiments for 1951–99 were generated in
order to determine what elements of skillfully simu-
lated U.S. responses to known SST forcing could be
predicted. These employed the multivariate regression
model using the one-season-lag relationships between
tropical SST predictors and the AGCM’s U.S. seasonal
climate. These are analogous to zero-lead predictions,
and estimate what the AGCM predictions would have
been given a forecast for the tropical SSTs. Virtually all
of the simulation skill was recovered in the hindcast
experiments for the seasons and the variables for which
ENSO was the dominate source of simulation skill. The
hindcasts failed to recover the AGCM simulation skill
of U.S. surface air temperature during late summer–
autumn. It was demonstrated, however, that a one-sea-
son-lagged bivariate model could recover the AGCM’s
high simulation skill during autumn. One conclusion
drawn from the hindcasts is that the principal SST

FIG. 9. The 1950–99 temporal correlation between the NDJ SST anomalies and the NDJ index of
subtropical west Pacific SSTs. The contour interval is 0.1. See Fig. 7 for the averaging domain for
constructing the index. The irregular white contour in the west Pacific encloses a region of SST variations
coherent with the index region, and is used as the forcing region for idealized AGCM simulations.
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sources of U.S. predictability can themselves be skill-
fully forecast at zero lead.

b. Discussion

Dynamical methods for U.S. climate prediction are
now achieving parity with empirical approaches (e.g.,
Peng et al. 2000). The key question is whether such
equivalence of capability testifies to the limitations in
skill of seasonal climate prediction, as suggested by
Anderson et al. (1999), or whether it speaks to the in-
fancy of dynamical models. Our diagnosis of the skill
sources offers the following insight on such questions.

FIG. 10. Spatial distribution of the correlation between the NDJ
SST anomalies in the western Pacific Ocean and the multi-AGCM
(top) ensemble mean and (middle) observed surface temperature
anomalies. The contour interval is 0.1. (bottom) The CCM3 re-
sponse to the idealized SST anomalies in the western Pacific
Ocean. The contour interval is 1.0.

FIG. 11. Same as Fig. 6, but for the NDJ simulation skill based
on (top) a univariate regression model using only an index of
subtropical west Pacific (WP) SSTs as predictor, (middle) a bi-
variate regression model using the WP, and Nino-3.4 indices as
predictors, and (bottom) the hindcast skill based on a lagged bi-
variate model relating ASO Niño-3.4 and WP SST anomalies to
NDJ surface temperature.
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The fact that the linear response to ENSO SST vari-
ability accounts for much of the AGCM skill over the
United States—particularly in winter/spring for both
precipitation and temperature—implies that a simple
regression model trained from observations should
have comparable skill to the dynamical model given
sufficient data. We confirm this to be the case in Fig. 12
where the bar graphs compare the hindcast skill of our
prior multivariate model with an identical model in
which the U.S. predictand data are derived from obser-
vations. Their 50-yr hindcast skills are indistinguishable
because both are originating from the ENSO influence
whose response is realistically modeled in the AGCMs.
If there are other tropical SST skill sources in nature,
then they are evidently too small (or they occur too
infrequently) to be detected and have material effects
on the 50-yr-averaged skill (this does not discount the
possible skillful contribution of such additional tropical
sources in individual years). The preeminence of ENSO
as a U.S. skill source is further verified by the result of
our singular value decomposition (SVD) analysis. We
found that the singular value of the leading SVD mode
is much larger than other SVD modes. Our result is
consistent with that predicted by DelSole and Chang
(2003). Our study did identify an additional non-ENSO
skill contributor, but as was the case with ENSO, a
linear empirical model could be used to capitalize upon
that source too.

In this study, our analysis has been focused on the
multimodel ensemble mean. Treating predictions from
different models as a single ensemble increases the en-
semble size and reduces sampling biases. Furthermore,
the skill of the ensemble mean is found to be higher
than the skill of individual AGCMs included (figure not

shown). In operational practice, the skill of seasonal
forecasts may be further raised by applying more so-
phisticated multimodel combination strategies (e.g.,
Goddard et al. 2003; Barnston et al. 2003). The sources
of skill identified in our analysis are limited only to
those that can be captured by the multimodel ensemble
mean. Additional sources may be identified when op-
timal ensemble average methods are applied to maxi-
mize the skill. It is also possible that the seasonal fore-
cast skill can be further improved, and additional non-
ENSO skill sources identified, when newer generation
models are available.

The possibility that extratropical SST variations con-
tribute to skill cannot be discounted based upon our
analysis. It is possible that the near equivalence in simu-
lation skill between the AGCMs and the statistical
models using only tropical SST predictors (e.g., in all
seasons for U.S. precipitation, and in winter/spring for
U.S. surface air temperature) is symptomatic of AGCM
biases, including the two-tier design of experiments,
rather than a lack of predictive impact of nontropical
SSTs. An important direction for future investigation is
assessing how, if at all, this current diagnosis of U.S.
seasonal forecast skill related to SST influences is modi-
fied when using the next generation of AGCMs. Also,
a comparative analysis of the AGCM skill against that
of coupled ocean–atmosphere models is needed to spe-
cifically address whether the predictability estimates,
such as presented herein and in previous studies using
two-tiered systems, are applicable to fully coupled
earth system models. Regarding the skill attributes of
such fully coupled models, it should also be noted that
initialization of observed land surface conditions may
be sources for U.S. skill, in addition to ocean surface
conditions. While the AGCM studied herein do employ
coupled soil moisture models of various complexity,
none of the runs used observed soil moisture condi-
tions.

A further open question in seasonal climate predict-
ability concerns the expected value for skill itself. Is an
analysis of skill drawn from 50 years of data a reliable
estimate of the true expected value? To what degree
does such a 50-yr analysis speak to the system’s pre-
dictability in general, and what are error bars on those
estimates owing to sampling alone? Little is known
about the manner in which skill can vary over extended
time periods. Insofar as ENSO has been affirmed to be
the primary source of skill, it is reasonable to suspect
that periods of low ENSO variance would lead to lower
U.S. climate predictability. At the same time, ENSO
itself accounts for only a small fraction of U.S. climate
variability (e.g., Hoerling and Kumar 2002), and thus
purely atmospheric intrinsic variations could also im-

FIG. 12. The U.S. spatially averaged multivariate model hind-
cast skill for 1951–99 for observed January–May-averaged U.S.
precipitation and surface temperature using identical empirical
models except that the predictand data are derived from the
AGCMs [MR(G)] in one case and from the observations in the
other case [MR(O)].
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pact skill fluctuations. As a further diagnosis of the
statistical robustness of our skill, we have used 650 yr of
output from the integration of an unforced coupled
ocean–atmosphere model [NCAR’s Community Cli-
mate System Model, version 2 (CCSM2; Kiehl and
Gent 2004)]. This model possesses ENSO-related vari-
ability that is sufficiently realistic for our purposes in-
sofar as the model’s ENSO signal over the United
States explains roughly the same fraction of interannual
variance as does the observed ENSO signal (not
shown). Another empirical multivariate model was de-
veloped for one-season-lag relationships between tropi-
cal SSTs and U.S. surface air temperature based on the
first 150 yr of the coupled model run. Hindcasts were
then made for the subsequent 500 yr of model data.
Figure 13 shows the probability densities of indepen-
dent 50-yr samples of hindcast skill of U.S. surface tem-
perature for the seasons JFM through MAM. The 50-yr
mean variations range from a low correlation skill of 0.1
to a high value of 0.3, with a median value near 0.2.
These variations arise purely due to intrinsic coupled
model noise. This result suggests that dynamical models
are still needed to fully harvest the skill source of sea-
sonal forecasts even if the skill of dynamical models
comes from just one degree of freedom in the SST,
because the skills of empirical methods trained on 50 yr
of data may have large decadal swings.

In conclusion, it is apparent that a sound appraisal of
the future prospects for U.S. seasonal forecast skill
must be found upon an understanding of the sources for
skill itself. Here we have explored the ocean’s role, and
identified a single degree of freedom in SST variations
as providing the bulk of U.S. seasonal skill. An outlook
for future capabilities must also seek to understand the
sources for multidecadal variations in skill, which our
analysis indicates could occur simply due to low-

frequency variations in ENSO and other intrinsic fluc-
tuations of the coupled ocean–atmosphere system. If
multidecadal variations in seasonal forecast skill are
sufficiently large, then they could mask technological
advances in seasonal prediction methodologies.
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